Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Small ; : e2311435, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461533

RESUMO

All weather, high-efficiency, energy-saving anti-icing/de-icing materials are of great importance for solving the problem of ice accumulation on outdoor equipment surfaces. In this study, a composite material with energy storage, active electro-/photo-thermal de-icing and passive super-hydrophobic anti-icing properties is proposed. Fluorinated epoxy resin and MWCNTs/PTFE particles are used to prepare the top multifunctional anti-icing/de-icing layer, which exhibited super-hydrophobicity with water contact angle greater than 155° and conductivity higher than 69 S m-1 . The super-hydrophobic durability of the top layer is verified through tape peeling and sandpaper abrasion tests. The surface can be heated by applying on voltage or light illumination, showing efficient electro-/photo-thermal and all-day anti-icing/de-icing performance. The oleogel material at the bottom layer is capable to absorb energy during heating process and release it during cooling process by phase transition, which greatly delayed the freezing time and saved energy. The icing test of single ice droplet, electro-/photo-thermal de-icing and defrosting tests also proved the high efficiency and energy saving of the anti-icing/de-icing strategy. This study provided a new way to manufacture multi-functional materials for practical anti-icing/de-icing applications.

2.
Carbohydr Polym ; 327: 121652, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171655

RESUMO

Laminaran is a major storage of carbohydrate in marine algae. Its high content and potential functions draw increasing attention. However, our understanding of its metabolisms and functions is still fragmented. After reviewing, marine algae exhibit a spectacular capacity of laminaran accumulation especially in the diatom Odontella aurita (65 % DW). Marine particulate organic carbon (POC) also has high contents of laminaran (42 ± 21 % DW). Laminaran shows a diel variation trend in marine algae, the content of which increases in the day but decreases at night. Laminaran also significantly accumulates in the stationary phase of algal growth. Furthermore, the metabolic pathway of laminaran and the remolding carbon mechanism in response to marine nitrogen limitation are proposed and comprehensively discussed. Laminaran production in marine phytoplankton is predicted to increase in future warmer and CO2-enriched oceans. Laminaran has diverse biological functions, including antioxidant, antimicrobial, anti-cancer, immunomodulatory, wound healing, and prebiotics. In addition, laminaran is also a major carbon storage compound in marine algae, suggesting its significant ecological function in marine carbon cycle. This study provides new insight into algal laminaran functions and its response mechanisms to environmental and climate changes.


Assuntos
Diatomáceas , Glucanos , Fitoplâncton/fisiologia , Compostos Orgânicos , Carbono
4.
Front Microbiol ; 14: 1240102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795293

RESUMO

Serratia marcescens is a gram-negative bacterium that is able to produce many secondary metabolites, such as the prominent red pigment prodigiosin (PG). In this work, a ptrA-disrupted mutant strain with reduced PG production was selected from Tn5 transposon mutants. RT-qPCR results indicated that ptrA promoted elevated transcription of the pig gene cluster in S. marcescens FZSF02. Furthermore, we found that ptrA also controls several other important biological functions of S. marcescens, including swimming and swarming motilities, biofilm formation, hemolytic activity, and stress tolerance. In conclusion, this study demonstrates that ptrA is a PG synthesis-promoting factor in S. marcescens and provides a brief understanding of the regulatory mechanism of ptrA in S. marcescens cell motility and hemolytic activity.

5.
Front Neurorobot ; 17: 1204418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719330

RESUMO

Semantic segmentation, which is a fundamental task in computer vision. Every pixel will have a specific semantic class assigned to it through semantic segmentation methods. Embedded systems and mobile devices are difficult to deploy high-accuracy segmentation algorithms. Despite the rapid development of semantic segmentation, the balance between speed and accuracy must be improved. As a solution to the above problems, we created a cross-scale fusion attention mechanism network called CFANet, which fuses feature maps from different scales. We first design a novel efficient residual module (ERM), which applies both dilation convolution and factorized convolution. Our CFANet is mainly constructed from ERM. Subsequently, we designed a new multi-branch channel attention mechanism (MCAM) to refine the feature maps at different levels. Experiment results show that CFANet achieved 70.6% mean intersection over union (mIoU) and 67.7% mIoU on Cityscapes and CamVid datasets, respectively, with inference speeds of 118 FPS and 105 FPS on NVIDIA RTX2080Ti GPU cards with 0.84M parameters.

6.
Int J Biol Macromol ; 252: 126361, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591430

RESUMO

Diatom containing different active biological macromolecules are thought to be an excellent microbial cell factory. Phaeodactylum tricornutum, a model diatom, is a superb chassis organism accumulating chrysolaminarin with important bioactivities. However, the characteristic of chrysolaminarin accumulation and molecular mechanism of the fluctuated chrysolaminarin in diatom are still unknown. In this study, physiological data and transcriptomic analysis were carried out to clarify the mechanism involved in chrysolaminarin fluctuation. The results showed that chrysolaminarin content fluctuated, from 7.41 % dry weight (DW) to 40.01 % DW during one light/dark cycle, increase by day and decrease by night. The similar fluctuated characteristic was also observed in neutral lipid content. Genes related to the biosynthesis of chrysolaminarin and neutral lipid were up-regulated at the beginning of light-phase, explaining the accumulation of these biological macromolecules. Furthermore, genes involved in carbohydrate degradation, cell cycle, DNA replication and mitochondria-localized ß-oxidation were up-regulated at the end of light phase and at the beginning of dark phase hinting an energy transition of carbohydrate to cell division during the dark period. Totally, our findings provide important information for the regulatory mechanism in the diurnal fluctuation of chrysolaminarin. It would also be of great help for the mass production of economical chrysolaminarin in marine diatom.


Assuntos
Diatomáceas , Transcriptoma , Diatomáceas/genética , Perfilação da Expressão Gênica , Lipídeos , Carboidratos
7.
ACS Nano ; 17(14): 13724-13733, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37403892

RESUMO

Ice accumulation on surfaces significantly jeopardizes the operational security and economic effectiveness of equipment. As one of the efficient anti-icing strategies, fracture-induced ice detachment strategy can realize low ice adhesion strength and is feasible for large-area anti-icing, but its application in harsh environment is restrained by mechanical robustness deterioration due to ultralow elastic moduli. It is still a challenge for fracture-promoted interfaces to reach ultralow ice adhesion and maintain strong mechanical robustness. Drawing inspiration from subcutaneous tissue, we propose a multiscale interpenetrating reinforcing method to develop a fracture-promoted ultraslippery ice detachment interface. Our approach minimizes elastic deformation and the stress threshold of fracture initiation during ice detachment, ensuring fast and noninjurious ice detachment on the interface. At the same time, this method reinforces the mechanical robustness of the fracture-promoted ultraslippery interface, making it possible to ensure long-term operation under harsh conditions. The superiority is revealed by ultralow ice adhesion strength below 20 kPa at -30 °C even after 200 continuous abrasion cycles, as well as efficient ice shedding during dynamic anti-icing tests, which is clarified by theoretical prediction and experimental verification. This work is expected to enlighten the design of next-generation durable anti-icing interface.

8.
Microb Cell Fact ; 22(1): 6, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611199

RESUMO

Phaeodactylum tricornutum (Pt) is a critical microbial cell factory to produce a wide spectrum of marketable products including recombinant biopharmaceutical N-glycoproteins. N-glycosylation modification of proteins is important for their activity, stability, and half-life, especially some special modifications, such as fucose-modification by fucosyltransferase (FucT). Three PtFucTs were annotated in the genome of P. tricornutum, PtFucT1 was located on the medial/trans-Golgi apparatus and PtFucT2-3 in the plastid stroma. Algal growth, biomass and photosynthesis efficiency were significantly inhibited in a knockout mutant of PtFucT1 (PtFucT1-KO). PtFucT1 played a role in non-core fucose modification of N-glycans. The knockout of PtFucT1 might affect the activity of PtGnTI in the complex and change the complex N-glycan to mannose type N-glycan. The study provided critical information for understanding the mechanism of protein N-glycosylation modification and using microalgae as an alternative ecofriendly cell factory to produce biopharmaceuticals.


Assuntos
Diatomáceas , Fucosiltransferases , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Fucose/metabolismo , Sistemas CRISPR-Cas , Proteínas Recombinantes/metabolismo , Polissacarídeos/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo
9.
J Hazard Mater ; 441: 129958, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36122523

RESUMO

In recent years, Poly(butylene adipate-co-terephthalate) (PBAT) films were wildly used due to its biodegradable properties. However, there are few reports of strains that can high efficiently degrade PBAT. Thermobifida fusca FXJ-1, a thermophilic actinomycete, was screened and identified from compost. FXJ-1 can efficiently degrade PBAT at 55 °C in MSM medium. The degradation rates of the pure PBAT film (PF), PBAT film used for mulching on agricultural fields (PAF), and PBAT-PLA-ST film (PPSF) were 82.87 ± 1.01%, 87.83 ± 2.00% and 52.53 ± 0.54%, respectively, after nine days of incubation in MSM medium. Cracking areas were monitored uniformly distributed on the surfaces of three kinds of PBAT-based films after treatment with FXJ-1 using scanning electron microscopy. The LC-MS results showed that PBAT might be degraded into adipic acid, terephthalic acid, butylene adipate, butylene terephthalate and butylene adipate-co-terephthalate, and these products are involved in the cleavage of ester bonds. We also found that amylase produced by FXJ-1 played an important role in the degradation of PPSF. FXJ-1 also showed an efficient PBAT-based films degradation ability in simulating compost environment, which implied its potential application in PBAT and starch-based film degradation by industrial composting.


Assuntos
Compostagem , Poliésteres , Adipatos/química , Alcenos , Amilases , Ésteres , Ácidos Ftálicos , Poliésteres/química , Amido/química , Thermobifida
10.
J Hazard Mater ; 443(Pt A): 130184, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36270189

RESUMO

Bacterial adaptation to extreme environments is often mediated by horizontal gene transfer (HGT) via genetic mobile elements. Nevertheless, phage-mediated HGT conferring bacterial arsenic resistance determinants has rarely been investigated. In this study, a highly arsenite and antimonite resistant bacterium, Citrobacter portucalensis strain Sb-2, was isolated, and genome analysis showed that several putative arsenite and antimonite resistance determinants were flanked or embedded in prophages. Furthermore, an active bacteriophage carrying one of the ars clusters (arsRDABC arsR-yraQ/arsP) was obtained and sequenced. These genes encoding putative arsenic resistance determinants were induced by arsenic and antimony as demonstrated by RT-qPCR, and one gene arsP/yraQ of the ars cluster was shown to give resistance to MAs(III) and Rox(III), thereby showing function. Here, we were able to directly show that these phage-mediated arsenic and antimony resistances play a significant role in adapting to As- and Sb-contaminated environments. In addition, we demonstrate that this phage is responsible for conferring arsenic and antimony resistances to C. portucalensis strain Sb-2.


Assuntos
Arsênio , Arsenitos , Bacteriófagos , Metaloides , Antimônio/toxicidade , Bacteriófagos/genética , Citrobacter/genética
11.
Front Microbiol ; 13: 1041146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466667

RESUMO

Prodigiosin is a promising secondary metabolite mainly produced by Serratia marcescens. The production of prodigiosin by S. marcescens is regulated by different kinds of regulatory systems, including the EnvZ/OmpR system. In this study, we demonstrated that the regulatory factor OmpR positively regulated prodigiosin production in S. marcescens FZSF02 by directly binding to the promoter region of the prodigiosin biosynthesis cluster with a lacZ reporter assay and electrophoretic mobility shift assay (EMSA). The binding sequence with the pig promoter was identified by a DNase I footprinting assay. We further demonstrate that OmpR regulates its own expression by directly binding to the promoter region of envZ/ompR. For the first time, the regulatory mechanism of prodigiosin production by the transcriptional factor OmpR was revealed.

12.
Microb Cell Fact ; 21(1): 219, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266689

RESUMO

Tunicamycin inhibits the first step of protein N-glycosylation modification. However, the physiological, transcriptomic, and N-glycomic effects of tunicamycin on important marine diatom Phaeodactylum tricornutum are still unknown. In this study, comprehensive approaches were used to study the effects of tunicamycin stress. The results showed that cell growth and photosynthesis were significantly inhibited in P. tricornutum under the tunicamycin stress. The soluble protein content was significantly decreased, while the soluble sugar and neutral lipid were dramatically increased to orchestrate the balance of carbon and nitrogen metabolisms. The stress of 0.3 µg ml-1 tunicamycin resulted in the differential expression of ERQC and ERAD related genes. The upregulation of genes involved in ERQC pathway, the activation of anti-oxidases and the differential expression of genes related with ERAD mechanism might be important for maintaining homeostasis in cell. The identification of N-glycans, especially complex-type N-glycan structures enriched the N-glycan database of diatom P. tricornutum and provided important information for studying the function of N-glycosylation modification on proteins. As a whole, our study proposed working models of ERQC and ERAD will provide a solid foundation for further in-depth study of the related mechanism and the diatom expression system.


Assuntos
Diatomáceas , Degradação Associada com o Retículo Endoplasmático , Diatomáceas/metabolismo , Tunicamicina/farmacologia , Retículo Endoplasmático/metabolismo , Glicoproteínas/genética , Polissacarídeos/metabolismo , Carbono/metabolismo , Açúcares/metabolismo , Nitrogênio/metabolismo , Lipídeos , Controle de Qualidade
13.
J Phycol ; 58(1): 121-132, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34634129

RESUMO

The MYB transcription factor (TF) family is one of the largest and most important TF families, regulating the growth and response of microalgae to stress. However, the gene structure and characteristics of Phaeodactylum tricornutum MYB TFs, and their functions under nitrogen deficiency, have not been explored yet. To identify all P. tricornutum MYB (PtMYB) genes, the MYB gene family was analyzed at the genome-wide level in this study. A total ofm26 PtMYB genes were identified from the genome of P. tricornutum. These PtMYB genes were divided into 5 subfamilies: 5R-MYB, 4R-MYB, R2R3-MYB, R1R2R3-MYB, and MYB-related proteins. Phylogenetical motif and gene structure analyses of MYB genes indicated that the number and proportion of MYB TFs were species-specific, and MYB genes exhibited a lot of duplication events from microalgae to higher plants. Furthermore, the differentially expressed patterns of all 26 PtMYB TFs implied that PtMYB genes might have functional specificity under nitrogen deficiency. Homology analysis of MYB genes revealed that PtMYB3, PtMYB15, and PtMYB21 might play important roles in the regulation of the diurnal cycle and response to nitrogen stress in P. tricornutum. PtMYB3, PtMYB15, and PtMYB21 genes might be used as potential candidate genes for further studying the regulatory mechanisms of P. tricornutum under nitrogen deficiency. This work provides an important foundation for the future research of the potential functions of PtMYB genes and its diurnal regulatory mechanisms under nitrogen deficiency.


Assuntos
Diatomáceas , Genes myb , Diatomáceas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Nitrogênio , Filogenia
14.
Front Plant Sci ; 12: 779307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925422

RESUMO

N-glycosylation is an important posttranslational modification in all eukaryotes, but little is known about the N-glycoproteins and N-glycans in microalgae. Here, N-glycoproteomic and N-glycomic approaches were used to unveil the N-glycoproteins and N-glycans in the model diatom Phaeodactylum tricornutum. In total, 863 different N-glycopeptides corresponding to 639 N-glycoproteins were identified from P. tricornutum. These N-glycoproteins participated in a variety of important metabolic pathways in P. tricornutum. Twelve proteins participating in the N-glycosylation pathway were identified as N-glycoproteins, indicating that the N-glycosylation of these proteins might be important for the protein N-glycosylation pathway. Subsequently, 69 N-glycans corresponding to 59 N-glycoproteins were identified and classified into high mannose and hybrid type N-glycans. High mannose type N-glycans contained four different classes, such as Man-5, Man-7, Man-9, and Man-10 with a terminal glucose residue. Hybrid type N-glycan harbored Man-4 with a terminal GlcNAc residue. The identification of N-glycosylation on nascent proteins expanded our understanding of this modification at a N-glycoproteomic scale, the analysis of N-glycan structures updated the N-glycan database in microalgae. The results obtained from this study facilitate the elucidation of the precise function of these N-glycoproteins and are beneficial for future designing the microalga to produce the functional humanized biopharmaceutical N-glycoproteins for the clinical therapeutics.

15.
Appl Environ Microbiol ; 87(24): e0158821, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613763

RESUMO

In this study, comprehensive analyses were performed to determine the function of an atypical MarR homolog in Achromobacter sp. strain As-55. Genomic analyses of Achromobacter sp. As-55 showed that this marR is located adjacent to an arsV gene. ArsV is a flavin-dependent monooxygenase that confers resistance to the antibiotic methylarsenite [MAs(III)], the organoarsenic compound roxarsone(III) [Rox(III)], and the inorganic antimonite [Sb(III)]. Similar marR genes are widely distributed in arsenic-resistant bacteria. Phylogenetic analyses showed that these MarRs are found in operons predicted to be involved in resistance to inorganic and organic arsenic species, so the subfamily was named MarRars. MarRars orthologs have three conserved cysteine residues, which are Cys36, Cys37, and Cys157 in Achromobacter sp. As-55, mutation of which compromises the response to MAs(III)/Sb(III). GFP-fluorescent biosensor assays show that AdMarRars (MarR protein of Achromobacter deleyi As-55) responds to trivalent As(III) and Sb(III) but not to pentavalent As(V) or Sb(V). The results of RT-qPCR assays show that arsV is expressed constitutively in a marR deletion mutant, indicating that marR represses transcription of arsV. Moreover, electrophoretic mobility shift assays (EMSAs) demonstrate that AdMarRars binds to the promoters of both marR and arsV in the absence of ligands and that DNA binding is relieved upon binding of As(III) and Sb(III). Our results demonstrate that AdMarRars is a novel As(III)/Sb(III)-responsive transcriptional repressor that controls expression of arsV, which confers resistance to MAs(III), Rox(III), and Sb(III). AdMarRars and its orthologs form a subfamily of MarR proteins that regulate genes conferring resistance to arsenic-containing antibiotics. IMPORTANCE In this study, a MarR family member, AdMarRars was shown to regulate the arsV gene, which confers resistance to arsenic-containing antibiotics. It is a founding member of a distinct subfamily that we refer to as MarRars, regulating genes conferring resistance to arsenic and antimony antibiotic compounds. AdMarRars was shown to be a repressor containing conserved cysteine residues that are required to bind As(III) and Sb(III), leading to a conformational change and subsequent derepression. Here we show that members of the MarR family are involved in regulating arsenic-containing compounds.


Assuntos
Achromobacter/genética , Arsênio , Arsenicais , Genes Bacterianos , Achromobacter/efeitos dos fármacos , Antibacterianos , Arsênio/farmacologia , Arsenicais/farmacologia , Cisteína , Farmacorresistência Bacteriana , Família Multigênica , Filogenia , Roxarsona/farmacologia
16.
Mar Drugs ; 19(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34677475

RESUMO

During the processes of primary and secondary endosymbiosis, different microalgae evolved to synthesis different storage polysaccharides. In stramenopiles, the main storage polysaccharides are ß-1,3-glucan, or laminarin, in vacuoles. Currently, laminarin is gaining considerable attention due to its application in the food, cosmetic and pharmaceuticals industries, and also its importance in global biogeochemical cycles (especially in the ocean carbon cycle). In this review, the structures, composition, contents, and bioactivity of laminarin were summarized in different algae. It was shown that the general features of laminarin are species-dependence. Furthermore, the proposed biosynthesis and catabolism pathways of laminarin, functions of key genes, and diel regulation of laminarin were also depicted and comprehensively discussed for the first time. However, the complete pathways, functions of genes, and diel regulatory mechanisms of laminarin require more biomolecular studies. This review provides more useful information and identifies the knowledge gap regarding the future studies of laminarin and its applications.


Assuntos
Glucanos/metabolismo , Polissacarídeos/metabolismo , Estramenópilas , Animais , Organismos Aquáticos , Produtos Biológicos/química , Glucanos/química , Polissacarídeos/química , Relação Estrutura-Atividade
17.
Front Microbiol ; 12: 705853, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367107

RESUMO

Prodigiosin is a promising secondary metabolite produced mainly by Serratia strains. To study the global regulatory mechanism of prodigiosin biosynthesis, a mutagenesis library containing 23,000 mutant clones was constructed with the EZ-Tn5 transposon, and 114 clones in the library showed altered prodigiosin production ability. For 37 of the 114 clones, transposon insertion occurred on the prodigiosin biosynthetic cluster genes; transposon inserted genes of the 77 clones belonged to 33 different outside prodigiosin biosynthetic cluster genes. These 33 genes can be divided into transcription-regulating genes, membrane protein-encoding genes, and metabolism enzyme-encoding genes. Most of the genes were newly reported to be involved in prodigiosin production. Transcriptional levels of the pigA gene were significantly downregulated in 22 mutants with different inserted genes, which was in accordance with the phenotype of decreased prodigiosin production. Functional confirmation of the mutant genes involved in the pyrimidine nucleotide biosynthesis pathway was carried out by adding orotate and uridylate (UMP) into the medium. Gene complementation confirmed the regulatory function of the EnvZ/OmpR two-component regulatory system genes envZ and ompR in prodigiosin production.

18.
Open Life Sci ; 16(1): 620-629, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34183994

RESUMO

The purpose of this study was to investigate whether the Dictyophora echinovolvata spore polysaccharides (DESP) affect the immunity in immunocompromised mice induced by cyclophosphamide (CTX). The healthy female Kunming mice were randomly divided into six groups, including a normal control (NC) group, a positive control group, a model control (MC) group, and three groups treated with low-, intermediate-, and high-dose polysaccharide, respectively. A series of immunoregulatory properties were determined, including humoral and cellular immunity, immune function, and immune factors of mononuclear macrophages. Compared with NC and MC groups, treatment with DESP significantly increased the spleen index and decreased the thymus index; increased the serum concentrations of immunoglobulin (Ig)A, IgG, IgM, hemolysin, IL-1ß, and IL-2; delayed the allergic reaction; and improved the splenic lymphocyte transformation ability; and enhanced the phagocytosis of macrophages and the ability to secrete IL-6, TNF-α, caspase-1, and NO with DESP supplementation. These results indicated that DESP might have a good regulatory effect on CTX-induced immunodeficiency in mice, adjust the body's immune imbalance, and improve the symptoms of low immunity.

19.
J Hazard Mater ; 380: 120862, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31325688

RESUMO

Tetracyclines (TCs) residues in livestock manure are the main origin of environmental tetracyclines contamination and have serious environmental and health risks. This work aimed to examine the effect of temperature on the degradation patterns of TCs antibiotics. Tetracycline (TC), doxycycline (DC), oxytetracycline (OTC) and chlortetracycline (CTC) were all degraded much more quickly in sterilized double distilled H2O (ddH2O) at higher temperatures and lost antibacterial activity after being incubated at 70 °C for 72 h. High pH value enhanced the degradation process of TCs solutions. Degradation products of the TCs were identified with LC/MS. The TCs from simulated composting with sterilized chicken manure and nonsterilized manure all showed temperature-dependent thermal degradation. The degradation pattern fitted the availability-adjusted loss model well. The fitted equations showed that the half-lifes of degradation of the TCs were 1.66-7.62 h at 70 °C, 3.29-21.39 h at 60 °C and 9.25-57.19 h at 50 °C. Compared with those of nonsterilized manures, we concluded that high temperature can effectively degrade the residual TCs in chicken manure by thermal degradation during high temperature composting. Temperatures that are elevated moderately, for example, up to 70 °C, during the composting process can make the degradation process more effective and rapid.


Assuntos
Antibacterianos/metabolismo , Compostagem , Poluentes Ambientais/metabolismo , Temperatura Alta , Esterco , Tetraciclinas/metabolismo , Animais , Galinhas , Concentração de Íons de Hidrogênio , Cinética
20.
Electron. j. biotechnol ; 40: 58-64, July. 2019. graf, tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1053475

RESUMO

Background: Prodigiosin has been demonstrated to be an important candidate in investigating anticancer drugs and in many other applications in recent years. However, industrial production of prodigiosin has not been achieved. In this study, we found a prodigiosin-producing strain, Serratia marcescens FZSF02, and its fermentation strategies were studied to achieve the maximum yield of prodigiosin. Results: When the culture medium consisted of 16.97 g/L of peanut powder, 16.02 g/L of beef extract, and 11.29 mL/L of olive oil, prodigiosin reached a yield of 13.622 ± 236 mg/L after culturing at 26 °C for 72 h. Furthermore, when 10 mL/L olive oil was added to the fermentation broth at the 24th hour of fermentation, the maximum prodigiosin production of 15,420.9 mg/L was obtained, which was 9.3-fold higher than the initial level before medium optimization. More than 60% of the prodigiosin produced with this optimized fermentation strategy was in the form of pigment pellets. To the best of our knowledge, this is the first report on this phenomenon of pigment pellet formation, which made it much easier to extract prodigiosin at low cost. Prodigiosin was then purified and identified by absorption spectroscopy, HPLC, and LCMS. Purified prodigiosin obtained in this study showed anticancer activity in separate experiments on several human cell cultures: A549, K562, HL60, HepG2, and HCT116. Conclusions: This is a promising strain for producing prodigiosin. The prodigiosin has potential in anticancer medicine studies.


Assuntos
Prodigiosina/biossíntese , Prodigiosina/farmacologia , Serratia marcescens/metabolismo , Antineoplásicos/farmacologia , Arachis/química , Pós , Prodigiosina/isolamento & purificação , Espectrometria de Massas , Células Tumorais Cultivadas/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Técnicas de Cultura de Células , Fermentação , Azeite de Oliva/química , Acetatos , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...